
Course project
SEMESTER – 3

 Submitted By:
Sasikanth Koti | MT19AIE308

Nikhila Dhulipalla | MT19AIE270

Adhun Thalekkara | MT19AIE205

PAGE 1

Link to drive containing all the details(proposal, code and

results):

https://drive.google.com/drive/folders/1cjmYezmBrjO5YwhTtCbBos66jHj9vBNB?u

sp=sharing

Datasets used in the paper:

RESIDE consisting of training and testing datasets.

Here the testing dataset consists of SOTS Indoor and SOTS outdoor.

https://drive.google.com/drive/folders/1cjmYezmBrjO5YwhTtCbBos66jHj9vBNB?usp=sharing
https://drive.google.com/drive/folders/1cjmYezmBrjO5YwhTtCbBos66jHj9vBNB?usp=sharing

PAGE 2

Introduction

Image dehazing is considered to be a low-level vision task which has got lots of

attention in computer vision domain past few decades. Haze, fog, fumes, mist or

smoke will greatly reduce the quality of scenery images, and the irradiance received

by the camera from the scene point will be attenuated along the line of sight. This

leads to image degradation which in turn will lose the contract and color fidelity as

the amount of scattering is related to the scene points distance from the camera as

the degradation is spatially variant. This also makes the visual tasks such as

classification, tracking, object detection and so on much difficult to solve. So,

removal of haze from the images was highly significant to increase the visibility of

the scene and also the rectify the color shift caused by the air light.

With the advance in technology, people are tending to use portable digital devices

such as smartphones extensively for capturing images and image reflection is one

such issue commonly faced. Especially for the images captured through glass or

mirror there is definitely an unpleasant reflection and it not only damages the image

quality but also plays a vital role in the performance of the computer vision tasks

like image classification. So, it’s highly desirable to be removed by using user-

friendly image reflection suppression technique which can be used on smart phones

within short span of time and obtain a better result in real-time as per the user’s

visual perception.

Implementation details

The main aim of our project is to apply CV techniques and develop pipeline for

image enhancement via Dehazing and removal of image reflections.

These has been successfully implemented in the below mentioned tasks details:

1. Implementing the pipeline for image enhancement via Dehazing.

2. Implementing image reflection removal optimization techniques to perform

image dehazing.

3. Implementing and reproducing existing results of the paper AAAI 2020 paper

- FFA-Net: Feature Fusion Attention Network for Single Image Dehazing.

4. Implementing own architecture to obtain possible improvements of the

current/near to SOTA.

5. Apply improved pipeline to video data for dehazing.

PAGE 3

TASK 1: Implementing the pipeline for image enhancement via

dehazing.

Dark channel prior (DCP) for single image haze removal was implemented along

with this the preprocessing technique is White Balance (WB) and postprocessing

technique used are CLAHE and DWT.

The dark channel prior is applicable on the outdoor haze free images where there is

a nonsky region. Here some of pixels might have low intensity in at least one of the

RGB color channel and the intensity of hazy images are very low and close to zero

in such channels is mainly because of the airlight. So, we can say that – if J is an

outdoor haze-free image (except sky region) then the intensity would be Jdark
→ 0.

The factors of low intensity in dark channel a) shadows of the objects/things b)

colorful objects or surfaces emitting low reflectance in any colosr channel c) dark

objects or surfaces. The hazy images will be brighter than its haze-free images, in

other words the hazy images are tend to have higher intensity for the regions with

the denser haze. But the images with the sky regions can be handled by using haze

imaging model and the dark channel prior together.

Results obtained on original image size:

Original Hazy image:

PAGE 4

Dehazed Image:

Original Un-hazy Image:

PAGE 5

WB is used as the preprocessing technique to remove the unrealistic color. It helps

in balancing the color temperature in the image by adding the opposite color to the

image so that the color temperature is neutral.

CLAHE – Contrast Limited Adaptive Histogram Equalization is a type of the

histogram equalization used as postprocessing technique. It helps in maintaining or

limiting the contrast amplification which in turn reduces the noise amplification

issue, in simpler words it is used for enhancing the local contrast of an image. Here

the vicinity of a given pixel value is given by the slope of the transformation function.

DWT – Discrete wavelet Transform is a technique used for decomposing the signal

into multiple subbands in such a way that low frequency subbands will be having a

finer frequency resolution. This is used as postprocessing technique.

Results obtained:

Original Hazy Image:

PAGE 6

Dehazed Image – preprocessing is WB and postprocessing is CLAHE:

Dehazed Image – preprocessing is WB and postprocessing is CLAHE and

DWT:

PAGE 7

Original Un-hazy Image:

Implementing the above dehazing technique on the images in the dataset:

We have considered the indoor and outdoor images for the implementation.

Indoor Hazy images:

Indoor clear images:

PAGE 8

Outdoor haze images:

Outdoor clear images:

Dehazed images:

Output of DCP on the indoor images:

Output of DCP on the indoor images with preprocessing as WB and

postprocessing as CLAHE:

Output of DCP on the indoor images with preprocessing as WB and

postprocessing as CLAHE and DWT:

PAGE 9

Output of DCP on the outdoor images:

Output of DCP on the outdoor images with preprocessing as WB and

postprocessing as CLAHE:

Output of DCP on the outdoor images with preprocessing as WB and

postprocessing as CLAHE and DWT:

PAGE 10

Evaluation Metrics – PSNR and SSIM

For indoor images:

Average PSNR for SOTS Indoor Images Dehazed
with DCP

14.91212226619612

Average PSNR for SOTS Indoor Images Dehazed
with DCP with Preprocessing(Pipeline1)

15.088614455629532

Average PSNR for SOTS Indoor Images Dehazed
with DCP with both Preprocessing and
Postprocessing(Pipeline2)

14.898261597476749

Average SSIM for SOTS Indoor Images Dehazed with
DCP

0.7808506442597811

Average SSIM for SOTS Indoor Images Dehazed with
DCP with Preprocessing(Pipeline1)

0.7487565257993833

Average SSIM for SOTS Indoor Images Dehazed with
DCP with both Preprocessing and
Postprocessing(Pipeline2)

0.7091964054242976

For outdoor images:

Average PSNR for SOTS Outdoor Images Dehazed
with DCP

21.9988773393858

Average PSNR for SOTS Outdoor Images Dehazed
with DCP with Preprocessing(Pipeline1)

18.558668056069813

Average PSNR for SOTS Outdoor Images Dehazed
with DCP with both Preprocessing and
Postprocessing(Pipeline2)

18.076255938198056

Average SSIM for SOTS Outdoor Images Dehazed
with DCP

0.9086461333139355

Average SSIM for SOTS Outdoor Images Dehazed
with DCP with Preprocessing(Pipeline1)

0.8236948048114106

Average SSIM for SOTS Outdoor Images Dehazed
with DCP with both Preprocessing and
Postprocessing(Pipeline2)

0.7580779204529856

PAGE 11

**Here the pipeline 1 means DCP with preprocessing as WB and postprocessing as

CLAHE and pipeline 2 means DCP with preprocessing as WB and postprocessing as

CLAHE and DWT.

Results obtained on resized image of 128 x 128:

Original Hazy image:

PAGE 12

Dehazed Image:

Original Un-hazy Image:

PAGE 13

Results obtained by applying preprocessing and postprocessing techniques

on resized image of 128 x 128:

Original Hazy Image:

Dehazed Image – preprocessing is WB and postprocessing is CLAHE:

PAGE 14

Dehazed Image – preprocessing is WB and postprocessing is CLAHE and

DWT:

Original Un-hazy Image:

PAGE 15

Implementing the above dehazing technique on the resized images of 128 x

128 in the dataset:

We have considered the indoor and outdoor images for the implementation.

Indoor Hazy images:

Indoor clear images:

Outdoor haze images:

Outdoor clear images:

PAGE 16

Dehazed images of size 128 x 128:

Output of DCP on the indoor images:

Output of DCP on the indoor images with preprocessing as WB and

postprocessing as CLAHE:

Output of DCP on the indoor images with preprocessing as WB and

postprocessing as CLAHE and DWT:

Output of DCP on the outdoor images:

PAGE 17

Output of DCP on the outdoor images with preprocessing as WB and

postprocessing as CLAHE:

Output of DCP on the outdoor images with preprocessing as WB and

postprocessing as CLAHE and DWT:

Evaluation Metrics – PSNR and SSIM

For indoor images:

Average PSNR for SOTS Indoor Images Dehazed
with DCP

14.770367734287765

Average PSNR for SOTS Indoor Images Dehazed
with DCP with Preprocessing(Pipeline1)

11.830743977178484

PAGE 18

Average PSNR for SOTS Indoor Images Dehazed
with DCP with both Preprocessing and
Postprocessing(Pipeline2)

11.15311820366197

Average SSIM for SOTS Indoor Images Dehazed with
DCP

0.7756665394078519

Average SSIM for SOTS Indoor Images Dehazed with
DCP with Preprocessing(Pipeline1)

0.677964536153642

Average SSIM for SOTS Indoor Images Dehazed with
DCP with both Preprocessing and
Postprocessing(Pipeline2)

0.511616417911044

For outdoor images:

Average PSNR for SOTS Outdoor Images Dehazed
with DCP

22.64856789796369

Average PSNR for SOTS Outdoor Images Dehazed
with DCP with Preprocessing(Pipeline1)

15.70474021815297

Average PSNR for SOTS Outdoor Images Dehazed
with DCP with both Preprocessing and
Postprocessing(Pipeline2)

14.925031079559234

Average SSIM for SOTS Outdoor Images Dehazed
with DCP

0.9226589232228252

Average SSIM for SOTS Outdoor Images Dehazed
with DCP with Preprocessing(Pipeline1)

0.771224421173174

Average SSIM for SOTS Outdoor Images Dehazed
with DCP with both Preprocessing and
Postprocessing(Pipeline2)

0.6395076251828142

**Here the pipeline 1 means DCP with preprocessing as WB and postprocessing as

CLAHE and pipeline 2 means DCP with preprocessing as WB and postprocessing as

CLAHE and DWT.

PAGE 19

We have tried implementing the Gaussian pyramid but no luck.

Results obtained on the resized images of 128 x 128:

Original Hazy Image:

Output of the Gaussian pyramid and dehaze:

PAGE 20

TASK 2: Implementing image reflection removal optimization

techniques to perform image dehazing

Image reflection usually spoils the outlook of the image captured especially the

images captured through glass or mirror selfies. So, image reflection suppression

technique has a great practical significance. There were many approaches proposed

to remove the reflection but the performance w.r.t the quality of the de-reflection

wasn’t satisfactory. Also, they were able to handle on the small sized images and had

the problem of computational inefficiency. We have implemented the image

reflection from one of the efficient approaches proposed in the recent papers, where,

the model is convex and the optimal solution is obtained by solving the partial

differential equation using Discrete Cosine Transform (DCT).

The base code of paper is on MATLAB and we have tried implementing the same in

python but the obtained results are not satisfactory. Hence, we did not apply the

reflection removal techniques for image dehazing.

Results Obtained:

Input image:

PAGE 21

Output image:

TASK 3: Implementing and reproducing existing results of the paper

AAAI 2020 paper - FFA-Net: Feature Fusion Attention Network for

Single Image Dehazing.

We have implemented the FFA-Net for single image dehazing in pytorch. The key

contributions of the author are as below:

a) Authors have proposed a novel end-to-end feature fusion attention network

FFA-Net for single image dehazing. The performance of this technique on

the regions with thick haze and rich texture details is outstanding and also

one of the main advantages was in the restoration of image details and color

fidelity.

b) Feature attention model was proposed which can combine the channel

attention and pixel attention mechanism providing additional flexibility with

different types of information and by focusing on the thick haze pixels and

important channel information.

PAGE 22

FA module:

c) A basic block with local residual learning and FA was proposed in which the

local residual learning can help in allowing the information having thin haze

region and the low frequency information obtained will be bypassed by

multiple skip connections. The FA will be helping to improve the capacity of

the FFA-Net overall.

Basic Block Structure:

d) FFA architecture was proposed which will help in retaining the shallow layer

information by passing it to the deep layers. It can fuse all the features and

also adaptively learn the different weights at different level feature

information, with this it helps in obtaining a better performance.

PAGE 23

The FFA-Net architecture is as below:

• We have obtained the inference using pretrained model on

resized test images of 128 x 128.

• We have trained the model from scratch with reduced resolution

of 46 x 62.

Below are the results of the both:

Results obtained on pretrained model for the resized images of 128 x 128:

Indoor hazy images:

Indoor clear images:

PAGE 24

Outdoor Hazy images:

Outdoor clear images:

Output of the dehazed FFA Net:

Indoor dehazed images:

Outdoor dehazed images:

PAGE 25

Evaluation Metrics – PSNR and SSIM

 Test SSIM Test PSNR

Indoor 0.5559013981819153 14.856913864135743

Outdoor 0.6362881175870818 19.408454786471236

Results obtained on model trained from scratch for the resized image of 46 x

62:

The images are resized to 46*62 for the model trained from scratch due to the

compute limitations.

Epochs run : 15 – showing the last epoch output

epoch 15/15 | step 10/219 | running loss 0.11416842862963676 | ssim

0.5856455862522125 | psnr 16.55859031677246

epoch 15/15 | step 20/219 | running loss 0.11717244610190392 | ssim

0.5889574348926544 | psnr 16.43051414489746

epoch 15/15 | step 30/219 | running loss 0.11775178462266922 | ssim

0.5789317846298218 | psnr 16.34684000015259

epoch 15/15 | step 40/219 | running loss 0.1169458195567131 | ssim

0.5836574375629425 | psnr 16.354582691192626

epoch 15/15 | step 50/219 | running loss 0.11673499271273613 | ssim

0.5812386453151703 | psnr 16.41306676864624

epoch 15/15 | step 60/219 | running loss 0.11290812715888024 | ssim

0.5827911019325256 | psnr 16.678758430480958

epoch 15/15 | step 70/219 | running loss 0.11842125728726387 | ssim

0.5801976203918457 | psnr 16.29718370437622

epoch 15/15 | step 80/219 | running loss 0.1159091167151928 | ssim

0.5810677289962769 | psnr 16.53145561218262

epoch 15/15 | step 90/219 | running loss 0.11414539739489556 | ssim

0.578901207447052 | psnr 16.611256790161132

epoch 15/15 | step 100/219 | running loss 0.11471728980541229 | ssim

0.5796096503734589 | psnr 16.51103639602661

PAGE 26

epoch 15/15 | step 110/219 | running loss 0.11433384269475937 | ssim

0.5840663015842438 | psnr 16.57526397705078

epoch 15/15 | step 120/219 | running loss 0.12006083130836487 | ssim

0.5801469147205353 | psnr 16.194326400756836

epoch 15/15 | step 130/219 | running loss 0.11878406926989556 | ssim

0.5825272917747497 | psnr 16.356505870819092

epoch 15/15 | step 140/219 | running loss 0.1143928386271 | ssim 0.5896229565143585

| psnr 16.539120483398438

epoch 15/15 | step 150/219 | running loss 0.11767048984766007 | ssim

0.5794375777244568 | psnr 16.36728391647339

epoch 15/15 | step 160/219 | running loss 0.1176500953733921 | ssim

0.5790887951850892 | psnr 16.33465929031372

epoch 15/15 | step 170/219 | running loss 0.1144893430173397 | ssim

0.5869877934455872 | psnr 16.57353868484497

epoch 15/15 | step 180/219 | running loss 0.11747756078839303 | ssim

0.5708408236503602 | psnr 16.39449644088745

epoch 15/15 | step 190/219 | running loss 0.11486219689249992 | ssim

0.5787747144699097 | psnr 16.547403621673585

epoch 15/15 | step 200/219 | running loss 0.1187741443514824 | ssim

0.5857049643993377 | psnr 16.25970516204834

epoch 15/15 | step 210/219 | running loss 0.11838586628437042 | ssim

0.5773221254348755 | psnr 16.31971321105957

epoch 15/15 | step 219/219 | running loss 0.118756712310844 | ssim 0.5801493724187216

| psnr 16.314223289489746

PAGE 27

Indoor Hazy image :

Indoor Clear image:

PAGE 28

Indoor Dehazed image:

Outdoor Hazy image :

PAGE 29

Outdoor Clear image:

Outdoor Dehazed image:

PAGE 30

Evaluation Metrics – PSNR and SSIM

 Test SSIM Test PSNR

Indoor 0.6332830214500427 16.72899995422363

Outdoor 0.5486948914527893 15.993049697875977

TASK 4: Implementing own architecture to obtain possible

improvements of the current/near to SOTA.

U-Net architecture:

This architecture appears in U-shape hence the name U-Net which uses a fully

convolution network model for the task. Here it consists of two parts – one is the

encoder part (left side in the above architecture diagram) and other is the decoder

part(right side in the above architecture diagram). The encoder consists of a stack

of convolutions and max pooling layers, in other words the network will learn what

information is in the image and decoder is used to enable the precise localization

using transposed convolutions, in other words it helps to recover the where

information by up sampling.

PAGE 31

Involution:

In the rapid advances of neural network architectures, convolution remains the

building mainstay of deep neural networks. The classical image filtering

methodology has two main properties spatial-agnostic and channel-specific.

Spatial-agnostic and spatial compact helps in enhancing the efficiency and

interpreting the translation equivalence but it deprives the convolution kernel to

adapt to the diverse visual patterns with respect to different spatial positions. To

conquer this limitation, a novel atomic operation for deep neural networks by

inverting the aforementioned design principles of convolution, coined as involution.

Here involution bridges between the convolution and self-attention in the design

and it is more effective and efficient than convolution and simpler than self-

attention.

Using the above two concepts we have implemented a modified

architecture called as Involuted U-Net.

We have implemented our own architecture to obtain a better performance

motivated by U-Net architecture. The main difference is we have used involutions

in place of convolutions and applied composite loss - perpetual (Alexnet) + SSIM

loss + PSNR loss along with weightages. The architecture consists of two parts, one

is the encoder part (left side in the below architecture diagram) and other is the

decoder part(right side in the below architecture diagram). The number of channels

considered for encoder are 64,128,256 and for the decoder are 256, 128, 64. To retain

the dimensions of the images, all the involutions and convolutions are padded. In

the output, instead of generating a single channel mask, were are generating an RGB

dehazed image.

PAGE 32

Model with U-Net and involution:

--

 Layer (type) Output Shape Param #

==

 Conv2d-1 [-1, 64, 128, 128] 192

 Unfold-2 [-1, 576, 16384] 0

 AvgPool2d-3 [-1, 3, 128, 128] 0

 Conv2d-4 [-1, 64, 128, 128] 192

 BatchNorm2d-5 [-1, 64, 128, 128] 128

 ReLU-6 [-1, 64, 128, 128] 0

 Conv2d-7 [-1, 9, 128, 128] 576

 Involution2d-8 [-1, 64, 128, 128] 0

 ReLU-9 [-1, 64, 128, 128] 0

 Conv2d-10 [-1, 64, 128, 128] 36,928

 ReLU-11 [-1, 64, 128, 128] 0

 Block_en-12 [-1, 64, 128, 128] 0

PAGE 33

 MaxPool2d-13 [-1, 64, 64, 64] 0

 Conv2d-14 [-1, 128, 64, 64] 8,192

 Unfold-15 [-1, 1152, 4096] 0

 AvgPool2d-16 [-1, 64, 64, 64] 0

 Conv2d-17 [-1, 128, 64, 64] 8,192

 BatchNorm2d-18 [-1, 128, 64, 64] 256

 ReLU-19 [-1, 128, 64, 64] 0

 Conv2d-20 [-1, 9, 64, 64] 1,152

 Involution2d-21 [-1, 128, 64, 64] 0

 ReLU-22 [-1, 128, 64, 64] 0

 Conv2d-23 [-1, 128, 64, 64] 147,584

 ReLU-24 [-1, 128, 64, 64] 0

 Block_en-25 [-1, 128, 64, 64] 0

 MaxPool2d-26 [-1, 128, 32, 32] 0

 Conv2d-27 [-1, 256, 32, 32] 32,768

 Unfold-28 [-1, 2304, 1024] 0

 AvgPool2d-29 [-1, 128, 32, 32] 0

 Conv2d-30 [-1, 256, 32, 32] 32,768

 BatchNorm2d-31 [-1, 256, 32, 32] 512

 ReLU-32 [-1, 256, 32, 32] 0

 Conv2d-33 [-1, 9, 32, 32] 2,304

 Involution2d-34 [-1, 256, 32, 32] 0

 ReLU-35 [-1, 256, 32, 32] 0

 Conv2d-36 [-1, 256, 32, 32] 590,080

 ReLU-37 [-1, 256, 32, 32] 0

 Block_en-38 [-1, 256, 32, 32] 0

 MaxPool2d-39 [-1, 256, 16, 16] 0

 Encoder-40 [[-1, 64, 128, 128], [-1, 128, 64, 64], [-1, 2

56, 32, 32]] 0

 ConvTranspose2d-41 [-1, 128, 64, 64] 131,200

 Conv2d-42 [-1, 128, 64, 64] 295,040

 ReLU-43 [-1, 128, 64, 64] 0

 Conv2d-44 [-1, 128, 64, 64] 147,584

 ReLU-45 [-1, 128, 64, 64] 0

 Block_de-46 [-1, 128, 64, 64] 0

 ConvTranspose2d-47 [-1, 64, 128, 128] 32,832

 Conv2d-48 [-1, 64, 128, 128] 73,792

 ReLU-49 [-1, 64, 128, 128] 0

 Conv2d-50 [-1, 64, 128, 128] 36,928

 ReLU-51 [-1, 64, 128, 128] 0

 Block_de-52 [-1, 64, 128, 128] 0

 Decoder-53 [-1, 64, 128, 128] 0

 Conv2d-54 [-1, 3, 128, 128] 195

==

Total params: 1,579,395

Trainable params: 1,579,395

Non-trainable params: 0

--

PAGE 34

Input size (MB): 0.19

Forward/backward pass size (MB): 1099511628116.73

Params size (MB): 6.02

Estimated Total Size (MB): 1099511628122.94

--

Training is carried out for 15 epochs with SGD optimizer, using learning rate

1e-2, weight decay of 0.01 and momentum 0.9 – displaying last few epochs:

=============== Epoch: 11

Train loss: -4.477931434161042, Train SSIM: 0.5625017621927896, Train PSNR:
15.402120248823186

Test loss SOTS Indoor: -4.58300256729126, Test SSIM SOTS Indoor:
0.564318115234375, Test PSNR SOTS Indoor: 15.671393402099609

Test loss SOTS Outdoor: -4.4845680594444275, Test SSIM SOTS Outdoor:
0.556801249341267, Test PSNR SOTS Outdoor: 15.481773314437246

=============== Epoch: 12

Train loss: -4.398374682692088, Train SSIM: 0.5505708798670275, Train PSNR:
15.168653956884311

Test loss SOTS Indoor: -4.740819454193115, Test SSIM SOTS Indoor:
0.5974895257949829, Test PSNR SOTS Indoor: 16.205234985351563

Test loss SOTS Outdoor: -4.667151629924774, Test SSIM SOTS Outdoor:
0.5678127781162418, Test PSNR SOTS Outdoor: 16.130863461068007

=============== Epoch: 13

Train loss: -4.3862909356208695, Train SSIM: 0.5472255715222935, Train PSNR:
15.132052006697638

Test loss SOTS Indoor: -4.532739818096161, Test SSIM SOTS Indoor:
0.5852424521446228, Test PSNR SOTS Indoor: 15.483044326782226

Test loss SOTS Outdoor: -5.1877481341362, Test SSIM SOTS Outdoor:
0.5790352128385529, Test PSNR SOTS Outdoor: 17.787031685433735

=============== Epoch: 14

PAGE 35

Train loss: -4.407835767693715, Train SSIM: 0.5563238682791196, Train PSNR:
15.192759141792477

Test loss SOTS Indoor: -4.943126082420349, Test SSIM SOTS Indoor:
0.6073142008781434, Test PSNR SOTS Indoor: 16.847265869140625

Test loss SOTS Outdoor: -4.481691896915436, Test SSIM SOTS Outdoor:
0.5506985415288104, Test PSNR SOTS Outdoor: 15.506303709696947

Inference on the Best Model

Indoor hazy images:

Indoor clear images:

Indoor dehazed images:

PAGE 36

Outdoor hazy images:

Outdoor clear images:

Outdoor dehazed images:

Evaluation Metrics – PSNR and SSIM

 Test Loss SOTS Test SSIM Test PSNR

Indoor -4.943126082420349 0.6073142008781434 16.847265869140625

Outdoor -5.1877481341362 0.5790352128385529 17.787031685433735

PAGE 37

TASK 5: Apply improved pipeline to video data for dehazing

We built a video dehazing pipeline using our trained Involuted U-Net and applied

it to hazy/foggy video

Results obtained:

We have shown the snippet of the video here in the report but the complete video

is available in the results folder mentioned at the start of the report:

Hazy video snippet:

PAGE 38

Dehazed video snippet:

PAGE 39

Conclusion

• We have shown the results on the pipeline developed for image enhancing

via dehazing in task1. We have obtained better results on the indoor images

and comparable results on the outdoor images considering the PNSR and

SSIM metrics.

• We have implemented and reproduced the results of the FFA-Net paper for

both – model trained from scratch and by using pretrained model. For the

pretrained model we have resized the image to 128 x 128 and for the model

trained from scratch, the images are resized to 46 x 62 due to the GPU

limitations (discussion in the next section).

• We have implemented a modified architecture – we have used involutions in

place of convolutions and applied composite loss - perpetual (Alexnet) +

SSIM loss + PSNR loss along with weightages. We have obtained a better

result than others.

• The visual quality of the images obtained in Task4 doesn’t appear to have the

realistic colors. This can be possibly be improved by considering the

perpetual loss of VGG.

• Also, if this model is trained on the higher image size or on the original size

of the images then we can obtain much better results and visual quality

compared to the results obtained FFA-Net paper (possibly by using better

GPU’s).

• We have implemented all the proposed tasks and we have clearly shown that

our own architecture implemented in task4 is giving better results compared

to others.

Methods Indoor Outdoor

 PSNR SSIM PSNR SSIM

DCP 14.77 0.7757 22.65 0.9226

DCP with Preprocessing
and

Postprocessing(Pipeline1)

11.83 0.678 15.7 0.7712

PAGE 40

DCP with Preprocessing
and

Postprocessing(Pipeline2)

11.15 0.5116 14.93 0.6395

FFA-Net on pretrained
model

14.86 0.5559 19.41 0.6363

Ours 16.85 0.6073 17.78 0.5790

Below are the methods used where the image size are not 128 x 128 so it is not

considered for the comparison.

Methods Indoor Outdoor

 PSNR SSIM PSNR SSIM

DCP 14.91 0.7808 21.99 0.9086

DCP with Preprocessing
and

Postprocessing(Pipeline1)

15.08 0.7487 18.55 0.8236

DCP with Preprocessing
and

Postprocessing(Pipeline2)

14.89 0.7091 18.07 0.7580

FFA-Net on the model
trained from

scratch(resized image)

16.73 0.6333 15.99 0.5487

Limitations

The main limitation was with respect to the GPU usage, as we had to run all the

codes on colab / colab pro, we had to compromise on things listed below.

• We have resized the images to 128 x 128 due to GPU limitations (in task1).

• We weren’t able to run the inference on the test dataset with the actual image

size so we had to resize it for both pre-trained and the model trained from

scratch (in task3).

• We weren’t able to use perpetual loss using VGG due to GPU limitations. So,

we have implemented the AlexNet perpetual loss (in task4 and 5).

• We weren’t able to replace all the convolutions in the model with involutions.

So, we have just replaced for few in the encoder (in task4 and 5).

PAGE 41

• We weren’t able to add residual connections in both encoder and decoder (in

task4 and 5).

• We weren’t able to train the model with higher batch sizes.

References

[1] FFA-Net: Feature Fusion Attention Network for Single Image Dehazing, Xu Qin1

et al. AAAI’20

[2] NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and

Haze-Free Images, Codruta O. Ancuti et al. CVPR’20

[3] Multi-Scale Boosted Dehazing Network with Dense Feature Fusion, Hang Dong

et al. CVPR’20

[4] Single Image Reflection Removal Beyond Linearity, Qiang Wen et al. CVPR’20

[5] Fast Single Image Reflection Suppression via Convex Optimization, Yang Yang

et al. CVPR’19

[6] Distilling Image Dehazing With Heterogeneous Taks Imitation, Ming Hong et

al, CVPR’19

[7] https://github.com/zhilin007/FFA-Net/blob/master/net/metrics.py

[8] https://scikit-

image.org/docs/dev/api/skimage.metrics.html#skimage.metrics.structural_similari

ty

[9] https://amaarora.github.io/2020/09/13/unet.html

[10] https://kornia.readthedocs.io/en/latest/losses.html

[11] https://medium.com/pytorch/multi-target-in-albumentations-16a777e9006e

[12] https://github.com/richzhang/PerceptualSimilarity

[13] https://richzhang.github.io/PerceptualSimilarity/

[14] https://discuss.pytorch.org/t/torchvision-transfors-how-to-perform-identical-

transform-on-both-image-and-target/10606/7

https://github.com/zhilin007/FFA-Net/blob/master/net/metrics.py
https://scikit-image.org/docs/dev/api/skimage.metrics.html#skimage.metrics.structural_similarity
https://scikit-image.org/docs/dev/api/skimage.metrics.html#skimage.metrics.structural_similarity
https://scikit-image.org/docs/dev/api/skimage.metrics.html#skimage.metrics.structural_similarity
https://amaarora.github.io/2020/09/13/unet.html
https://kornia.readthedocs.io/en/latest/losses.html
https://medium.com/pytorch/multi-target-in-albumentations-16a777e9006e
https://github.com/richzhang/PerceptualSimilarity
https://richzhang.github.io/PerceptualSimilarity/
https://discuss.pytorch.org/t/torchvision-transfors-how-to-perform-identical-transform-on-both-image-and-target/10606/7
https://discuss.pytorch.org/t/torchvision-transfors-how-to-perform-identical-transform-on-both-image-and-target/10606/7

PAGE 42

[15] https://github.com/yyhz76/reflectSuppress

[16] https://sanjivgautamofficial.medium.com/perceptual-loss-well-it-sounds-

interesting-after-neural-style-transfer-d09a48b6fb7d

[17] https://github.com/ChristophReich1996/Involution

[18] https://arxiv.org/abs/2103.06255]

https://github.com/yyhz76/reflectSuppress
https://sanjivgautamofficial.medium.com/perceptual-loss-well-it-sounds-interesting-after-neural-style-transfer-d09a48b6fb7d
https://sanjivgautamofficial.medium.com/perceptual-loss-well-it-sounds-interesting-after-neural-style-transfer-d09a48b6fb7d
https://github.com/ChristophReich1996/Involution
https://arxiv.org/abs/2103.06255

