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Link to drive containing all the details(proposal, code and 

results): 

https://drive.google.com/drive/folders/1cjmYezmBrjO5YwhTtCbBos66jHj9vBNB?u

sp=sharing 

 

Datasets used in the paper: 

RESIDE consisting of training and testing datasets. 

Here the testing dataset consists of SOTS Indoor and SOTS outdoor. 
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Introduction 

Image dehazing is considered to be a low-level vision task which has got lots of 

attention in computer vision domain past few decades. Haze, fog, fumes, mist or 

smoke will greatly reduce the quality of scenery images, and the irradiance received 

by the camera from the scene point will be attenuated along the line of sight. This 

leads to image degradation which in turn will lose the contract and color fidelity as 

the amount of scattering is related to the scene points distance from the camera as 

the degradation is spatially variant. This also makes the visual tasks such as 

classification, tracking, object detection and so on much difficult to solve. So, 

removal of haze from the images was highly significant to increase the visibility of 

the scene and also the rectify the color shift caused by the air light. 

With the advance in technology, people are tending to use portable digital devices 

such as smartphones extensively for capturing images and image reflection is one 

such issue commonly faced. Especially for the images captured through glass or 

mirror there is definitely an unpleasant reflection and it not only damages the image 

quality but also plays a vital role in the performance of the computer vision tasks 

like image classification. So, it’s highly desirable to be removed by using user-

friendly image reflection suppression technique which can be used on smart phones 

within short span of time and obtain a better result in real-time as per the user’s 

visual perception. 

Implementation details 

The main aim of our project is to apply CV techniques and develop pipeline for 

image enhancement via Dehazing and removal of image reflections.  

These has been successfully implemented in the below mentioned tasks details: 

1. Implementing the pipeline for image enhancement via Dehazing. 

2. Implementing image reflection removal optimization techniques to perform 

image dehazing. 

3. Implementing and reproducing existing results of the paper AAAI 2020 paper 

- FFA-Net: Feature Fusion Attention Network for Single Image Dehazing. 

4. Implementing own architecture to obtain possible improvements of the 

current/near to SOTA. 

5. Apply improved pipeline to video data for dehazing. 
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TASK 1: Implementing the pipeline for image enhancement via 

dehazing. 

Dark channel prior (DCP) for single image haze removal was implemented along 

with this the preprocessing technique is White Balance (WB) and postprocessing 

technique used are CLAHE and DWT. 

The dark channel prior is applicable on the outdoor haze free images where there is 

a nonsky region. Here some of pixels might have low intensity in at least one of the 

RGB color channel and the intensity of hazy images are very low and close to zero 

in such channels is mainly because of the airlight. So, we can say that – if J is an 

outdoor haze-free image (except sky region) then the intensity would be Jdark 
→ 0. 

The factors of low intensity in dark channel a) shadows of the objects/things b) 

colorful objects or surfaces emitting low reflectance in any colosr channel c) dark 

objects or surfaces. The hazy images will be brighter than its haze-free images, in 

other words the hazy images are tend to have higher intensity for the regions with 

the denser haze. But the images with the sky regions can be handled by using haze 

imaging model and the dark channel prior together. 

Results obtained on original image size: 

Original Hazy image: 
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Dehazed Image: 

 

Original Un-hazy Image: 
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WB is used as the preprocessing technique to remove the unrealistic color. It helps 

in balancing the color temperature in the image by adding the opposite color to the 

image so that the color temperature is neutral.  

CLAHE – Contrast Limited Adaptive Histogram Equalization is a type of the 

histogram equalization used as postprocessing technique. It helps in maintaining or 

limiting the contrast amplification which in turn reduces the noise amplification 

issue, in simpler words it is used for enhancing the local contrast of an image. Here 

the vicinity of a given pixel value is given by the slope of the transformation function. 

DWT – Discrete wavelet Transform is a technique used for decomposing the signal 

into multiple subbands in such a way that low frequency subbands will be having a 

finer frequency resolution. This is used as postprocessing technique. 

Results obtained: 

Original Hazy Image: 
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Dehazed Image – preprocessing is WB and postprocessing is CLAHE: 

 

Dehazed Image – preprocessing is WB and postprocessing is CLAHE and 

DWT: 

 



PAGE 7 

Original Un-hazy Image: 

 

 

Implementing the above dehazing technique on the images in the dataset: 

We have considered the indoor and outdoor images for the implementation. 

Indoor Hazy images: 

 

Indoor clear images: 
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Outdoor haze images: 

 

Outdoor clear images: 

 

Dehazed images: 

Output of DCP on the indoor images: 

 

Output of DCP on the indoor images with preprocessing as WB and 

postprocessing as CLAHE: 

 

Output of DCP on the indoor images with preprocessing as WB and 

postprocessing as CLAHE and DWT: 
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Output of DCP on the outdoor images: 

 

Output of DCP on the outdoor images with preprocessing as WB and 

postprocessing as CLAHE: 

 

Output of DCP on the outdoor images with preprocessing as WB and 

postprocessing as CLAHE and DWT: 
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Evaluation Metrics – PSNR and SSIM 

For indoor images: 

Average PSNR for SOTS Indoor Images Dehazed 
with DCP 

14.91212226619612 

Average PSNR for SOTS Indoor Images Dehazed 
with DCP with Preprocessing(Pipeline1) 

15.088614455629532 

Average PSNR for SOTS Indoor Images Dehazed 
with DCP with both Preprocessing and 
Postprocessing(Pipeline2) 

14.898261597476749 

Average SSIM for SOTS Indoor Images Dehazed with 
DCP 

0.7808506442597811 

Average SSIM for SOTS Indoor Images Dehazed with 
DCP with Preprocessing(Pipeline1) 

0.7487565257993833 

Average SSIM for SOTS Indoor Images Dehazed with 
DCP with both Preprocessing and 
Postprocessing(Pipeline2) 

0.7091964054242976 

 

For outdoor images: 

Average PSNR for SOTS Outdoor Images Dehazed 
with DCP 

21.9988773393858 

Average PSNR for SOTS Outdoor Images Dehazed 
with DCP with Preprocessing(Pipeline1) 

18.558668056069813 

Average PSNR for SOTS Outdoor Images Dehazed 
with DCP with both Preprocessing and 
Postprocessing(Pipeline2) 

18.076255938198056 

Average SSIM for SOTS Outdoor Images Dehazed 
with DCP 

0.9086461333139355 

Average SSIM for SOTS Outdoor Images Dehazed 
with DCP with Preprocessing(Pipeline1) 

0.8236948048114106 

Average SSIM for SOTS Outdoor Images Dehazed 
with DCP with both Preprocessing and 
Postprocessing(Pipeline2) 

0.7580779204529856 
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**Here the pipeline 1 means DCP with preprocessing as WB and postprocessing as 

CLAHE and pipeline 2 means DCP with preprocessing as WB and postprocessing as 

CLAHE and DWT. 

 

 

 

Results obtained on resized image of 128 x 128: 

Original Hazy image: 
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Dehazed Image: 

 

 

Original Un-hazy Image: 
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Results obtained by applying preprocessing and postprocessing techniques 

on resized image of 128 x 128: 

Original Hazy Image: 

 

Dehazed Image – preprocessing is WB and postprocessing is CLAHE:  
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Dehazed Image – preprocessing is WB and postprocessing is CLAHE and 

DWT: 

 

Original Un-hazy Image: 
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Implementing the above dehazing technique on the resized images of 128 x 

128 in the dataset: 

We have considered the indoor and outdoor images for the implementation. 

Indoor Hazy images: 

 

Indoor clear images: 

 

 

Outdoor haze images: 

 

Outdoor clear images: 
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Dehazed images of size 128 x 128: 

Output of DCP on the indoor images: 

 

Output of DCP on the indoor images with preprocessing as WB and 

postprocessing as CLAHE: 

 

Output of DCP on the indoor images with preprocessing as WB and 

postprocessing as CLAHE and DWT: 

 

Output of DCP on the outdoor images: 
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Output of DCP on the outdoor images with preprocessing as WB and 

postprocessing as CLAHE: 

 

Output of DCP on the outdoor images with preprocessing as WB and 

postprocessing as CLAHE and DWT: 

 

 

 

Evaluation Metrics – PSNR and SSIM 

For indoor images: 

Average PSNR for SOTS Indoor Images Dehazed 
with DCP 

14.770367734287765 

Average PSNR for SOTS Indoor Images Dehazed 
with DCP with Preprocessing(Pipeline1) 

11.830743977178484 
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Average PSNR for SOTS Indoor Images Dehazed 
with DCP with both Preprocessing and 
Postprocessing(Pipeline2) 

11.15311820366197 

Average SSIM for SOTS Indoor Images Dehazed with 
DCP 

0.7756665394078519 

Average SSIM for SOTS Indoor Images Dehazed with 
DCP with Preprocessing(Pipeline1) 

0.677964536153642 

Average SSIM for SOTS Indoor Images Dehazed with 
DCP with both Preprocessing and 
Postprocessing(Pipeline2) 

0.511616417911044 

 

For outdoor images: 

Average PSNR for SOTS Outdoor Images Dehazed 
with DCP 

22.64856789796369 

Average PSNR for SOTS Outdoor Images Dehazed 
with DCP with Preprocessing(Pipeline1) 

15.70474021815297 

Average PSNR for SOTS Outdoor Images Dehazed 
with DCP with both Preprocessing and 
Postprocessing(Pipeline2) 

14.925031079559234 

Average SSIM for SOTS Outdoor Images Dehazed 
with DCP 

0.9226589232228252 

Average SSIM for SOTS Outdoor Images Dehazed 
with DCP with Preprocessing(Pipeline1) 

0.771224421173174 

Average SSIM for SOTS Outdoor Images Dehazed 
with DCP with both Preprocessing and 
Postprocessing(Pipeline2) 

0.6395076251828142 

**Here the pipeline 1 means DCP with preprocessing as WB and postprocessing as 

CLAHE and pipeline 2 means DCP with preprocessing as WB and postprocessing as 

CLAHE and DWT. 
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We have tried implementing the Gaussian pyramid but no luck.  

Results obtained on the resized images of 128 x 128: 

Original Hazy Image: 

 

Output of the Gaussian pyramid and dehaze: 
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TASK 2: Implementing image reflection removal optimization 

techniques to perform image dehazing 

Image reflection usually spoils the outlook of the image captured especially the 

images captured through glass or mirror selfies. So, image reflection suppression 

technique has a great practical significance. There were many approaches proposed 

to remove the reflection but the performance w.r.t the quality of the de-reflection 

wasn’t satisfactory. Also, they were able to handle on the small sized images and had 

the problem of computational inefficiency. We have implemented the image 

reflection from one of the efficient approaches proposed in the recent papers, where, 

the model is convex and the optimal solution is obtained by solving the partial 

differential equation using Discrete Cosine Transform (DCT).  

The base code of paper is on MATLAB and we have tried implementing the same in 

python but the obtained results are not satisfactory. Hence, we did not apply the 

reflection removal techniques for image dehazing. 

Results Obtained: 

Input image: 
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Output image: 

 

 

 

TASK 3: Implementing and reproducing existing results of the paper 

AAAI 2020 paper - FFA-Net: Feature Fusion Attention Network for 

Single Image Dehazing. 

We have implemented the FFA-Net for single image dehazing in pytorch. The key 

contributions of the author are as below: 

a) Authors have proposed a novel end-to-end feature fusion attention network 

FFA-Net for single image dehazing. The performance of this technique on 

the regions with thick haze and rich texture details is outstanding and also 

one of the main advantages was in the restoration of image details and color 

fidelity. 

b) Feature attention model was proposed which can combine the channel 

attention and pixel attention mechanism providing additional flexibility with 

different types of information and by focusing on the thick haze pixels and 

important channel information. 
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FA module: 

 

 

c) A basic block with local residual learning and FA was proposed in which the 

local residual learning can help in allowing the information having thin haze 

region and the low frequency information obtained will be bypassed by 

multiple skip connections. The FA will be helping to improve the capacity of 

the FFA-Net overall. 

Basic Block Structure: 

 
 

d) FFA architecture was proposed which will help in retaining the shallow layer 

information by passing it to the deep layers. It can fuse all the features and 

also adaptively learn the different weights at different level feature 

information, with this it helps in obtaining a better performance. 
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The FFA-Net architecture is as below: 

 

 

• We have obtained the inference using pretrained model on 

resized test images of 128 x 128. 

• We have trained the model from scratch with reduced resolution 

of 46 x 62. 

Below are the results of the both: 

 

Results obtained on pretrained model for the resized images of 128 x 128: 

Indoor hazy images: 

 

Indoor clear images: 
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Outdoor Hazy images: 

 

Outdoor clear images: 

 

 

Output of the dehazed FFA Net: 

Indoor dehazed images: 

 

Outdoor dehazed images: 
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Evaluation Metrics – PSNR and SSIM 

 Test SSIM Test PSNR 

Indoor 0.5559013981819153 14.856913864135743 

Outdoor 0.6362881175870818 19.408454786471236 

 

Results obtained on model trained from scratch for the resized image of 46 x 

62: 

The images are resized to 46*62 for the model trained from scratch due to the 

compute limitations. 

Epochs run : 15 – showing the last epoch output 

epoch 15/15 | step 10/219  | running loss 0.11416842862963676 | ssim 

0.5856455862522125 | psnr 16.55859031677246 

epoch 15/15 | step 20/219  | running loss 0.11717244610190392 | ssim 

0.5889574348926544 | psnr 16.43051414489746 

epoch 15/15 | step 30/219  | running loss 0.11775178462266922 | ssim 

0.5789317846298218 | psnr 16.34684000015259 

epoch 15/15 | step 40/219  | running loss 0.1169458195567131 | ssim 

0.5836574375629425 | psnr 16.354582691192626 

epoch 15/15 | step 50/219  | running loss 0.11673499271273613 | ssim 

0.5812386453151703 | psnr 16.41306676864624 

epoch 15/15 | step 60/219  | running loss 0.11290812715888024 | ssim 

0.5827911019325256 | psnr 16.678758430480958 

epoch 15/15 | step 70/219  | running loss 0.11842125728726387 | ssim 

0.5801976203918457 | psnr 16.29718370437622 

epoch 15/15 | step 80/219  | running loss 0.1159091167151928 | ssim 

0.5810677289962769 | psnr 16.53145561218262 

epoch 15/15 | step 90/219  | running loss 0.11414539739489556 | ssim 

0.578901207447052 | psnr 16.611256790161132 

epoch 15/15 | step 100/219  | running loss 0.11471728980541229 | ssim 

0.5796096503734589 | psnr 16.51103639602661 
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epoch 15/15 | step 110/219  | running loss 0.11433384269475937 | ssim 

0.5840663015842438 | psnr 16.57526397705078 

epoch 15/15 | step 120/219  | running loss 0.12006083130836487 | ssim 

0.5801469147205353 | psnr 16.194326400756836 

epoch 15/15 | step 130/219  | running loss 0.11878406926989556 | ssim 

0.5825272917747497 | psnr 16.356505870819092 

epoch 15/15 | step 140/219  | running loss 0.1143928386271 | ssim 0.5896229565143585 

| psnr 16.539120483398438 

epoch 15/15 | step 150/219  | running loss 0.11767048984766007 | ssim 

0.5794375777244568 | psnr 16.36728391647339 

epoch 15/15 | step 160/219  | running loss 0.1176500953733921 | ssim 

0.5790887951850892 | psnr 16.33465929031372 

epoch 15/15 | step 170/219  | running loss 0.1144893430173397 | ssim 

0.5869877934455872 | psnr 16.57353868484497 

epoch 15/15 | step 180/219  | running loss 0.11747756078839303 | ssim 

0.5708408236503602 | psnr 16.39449644088745 

epoch 15/15 | step 190/219  | running loss 0.11486219689249992 | ssim 

0.5787747144699097 | psnr 16.547403621673585 

epoch 15/15 | step 200/219  | running loss 0.1187741443514824 | ssim 

0.5857049643993377 | psnr 16.25970516204834 

epoch 15/15 | step 210/219  | running loss 0.11838586628437042 | ssim 

0.5773221254348755 | psnr 16.31971321105957 

epoch 15/15 | step 219/219  | running loss 0.118756712310844 | ssim 0.5801493724187216 

| psnr 16.314223289489746 
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Indoor Hazy image : 

 

 

Indoor Clear image: 
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Indoor Dehazed image: 

 

 

Outdoor Hazy image : 
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Outdoor Clear image: 

 

 

Outdoor Dehazed image: 
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Evaluation Metrics – PSNR and SSIM 

 Test SSIM Test PSNR 

Indoor 0.6332830214500427 16.72899995422363 

Outdoor 0.5486948914527893 15.993049697875977 

 

 

TASK 4: Implementing own architecture to obtain possible 

improvements of the current/near to SOTA. 

U-Net architecture: 

 

This architecture appears in U-shape hence the name U-Net which uses a fully 

convolution network model for the task. Here it consists of two parts – one is the 

encoder part (left side in the above architecture diagram) and other is the decoder 

part(right side in the above architecture diagram). The encoder consists of a stack 

of convolutions and max pooling layers, in other words the network will learn what 

information is in the image and decoder is used to enable the precise localization 

using transposed convolutions, in other words it helps to recover the where 

information by up sampling. 
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Involution: 

 

In the rapid advances of neural network architectures, convolution remains the 

building mainstay of deep neural networks. The classical image filtering 

methodology has two main properties spatial-agnostic and channel-specific. 

Spatial-agnostic and spatial compact helps in enhancing the efficiency and 

interpreting the translation equivalence but it deprives the convolution kernel to 

adapt to the diverse visual patterns with respect to different spatial positions. To 

conquer this limitation, a novel atomic operation for deep neural networks by 

inverting the aforementioned design principles of convolution, coined as involution. 

Here involution bridges between the convolution and self-attention in the design 

and it is more effective and efficient than convolution and simpler than self-

attention. 

Using the above two concepts we have implemented a modified 

architecture called as Involuted U-Net. 

We have implemented our own architecture to obtain a better performance 

motivated by U-Net architecture. The main difference is we have used involutions 

in place of convolutions and applied composite loss - perpetual (Alexnet) + SSIM 

loss + PSNR loss along with weightages. The architecture consists of two parts, one 

is the encoder part (left side in the below architecture diagram) and other is the 

decoder part(right side in the below architecture diagram). The number of channels 

considered for encoder are 64,128,256 and for the decoder are 256, 128, 64. To retain 

the dimensions of the images, all the involutions and convolutions are padded. In 

the output, instead of generating a single channel mask, were are generating an RGB 

dehazed image. 
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Model with U-Net and involution: 

---------------------------------------------------------------- 

        Layer (type)               Output Shape         Param # 

================================================================ 

            Conv2d-1         [-1, 64, 128, 128]             192 

            Unfold-2           [-1, 576, 16384]               0 

         AvgPool2d-3          [-1, 3, 128, 128]               0 

            Conv2d-4         [-1, 64, 128, 128]             192 

       BatchNorm2d-5         [-1, 64, 128, 128]             128 

              ReLU-6         [-1, 64, 128, 128]               0 

            Conv2d-7          [-1, 9, 128, 128]             576 

      Involution2d-8         [-1, 64, 128, 128]               0 

              ReLU-9         [-1, 64, 128, 128]               0 

           Conv2d-10         [-1, 64, 128, 128]          36,928 

             ReLU-11         [-1, 64, 128, 128]               0 

         Block_en-12         [-1, 64, 128, 128]               0 
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        MaxPool2d-13           [-1, 64, 64, 64]               0 

           Conv2d-14          [-1, 128, 64, 64]           8,192 

           Unfold-15           [-1, 1152, 4096]               0 

        AvgPool2d-16           [-1, 64, 64, 64]               0 

           Conv2d-17          [-1, 128, 64, 64]           8,192 

      BatchNorm2d-18          [-1, 128, 64, 64]             256 

             ReLU-19          [-1, 128, 64, 64]               0 

           Conv2d-20            [-1, 9, 64, 64]           1,152 

     Involution2d-21          [-1, 128, 64, 64]               0 

             ReLU-22          [-1, 128, 64, 64]               0 

           Conv2d-23          [-1, 128, 64, 64]         147,584 

             ReLU-24          [-1, 128, 64, 64]               0 

         Block_en-25          [-1, 128, 64, 64]               0 

        MaxPool2d-26          [-1, 128, 32, 32]               0 

           Conv2d-27          [-1, 256, 32, 32]          32,768 

           Unfold-28           [-1, 2304, 1024]               0 

        AvgPool2d-29          [-1, 128, 32, 32]               0 

           Conv2d-30          [-1, 256, 32, 32]          32,768 

      BatchNorm2d-31          [-1, 256, 32, 32]             512 

             ReLU-32          [-1, 256, 32, 32]               0 

           Conv2d-33            [-1, 9, 32, 32]           2,304 

     Involution2d-34          [-1, 256, 32, 32]               0 

             ReLU-35          [-1, 256, 32, 32]               0 

           Conv2d-36          [-1, 256, 32, 32]         590,080 

             ReLU-37          [-1, 256, 32, 32]               0 

         Block_en-38          [-1, 256, 32, 32]               0 

        MaxPool2d-39          [-1, 256, 16, 16]               0 

          Encoder-40  [[-1, 64, 128, 128], [-1, 128, 64, 64], [-1, 2

56, 32, 32]]               0 

  ConvTranspose2d-41          [-1, 128, 64, 64]         131,200 

           Conv2d-42          [-1, 128, 64, 64]         295,040 

             ReLU-43          [-1, 128, 64, 64]               0 

           Conv2d-44          [-1, 128, 64, 64]         147,584 

             ReLU-45          [-1, 128, 64, 64]               0 

         Block_de-46          [-1, 128, 64, 64]               0 

  ConvTranspose2d-47         [-1, 64, 128, 128]          32,832 

           Conv2d-48         [-1, 64, 128, 128]          73,792 

             ReLU-49         [-1, 64, 128, 128]               0 

           Conv2d-50         [-1, 64, 128, 128]          36,928 

             ReLU-51         [-1, 64, 128, 128]               0 

         Block_de-52         [-1, 64, 128, 128]               0 

          Decoder-53         [-1, 64, 128, 128]               0 

           Conv2d-54          [-1, 3, 128, 128]             195 

================================================================ 

Total params: 1,579,395 

Trainable params: 1,579,395 

Non-trainable params: 0 

---------------------------------------------------------------- 
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Input size (MB): 0.19 

Forward/backward pass size (MB): 1099511628116.73 

Params size (MB): 6.02 

Estimated Total Size (MB): 1099511628122.94 

---------------------------------------------------------------- 

Training is carried out for 15 epochs with SGD optimizer, using learning rate 

1e-2, weight decay of 0.01 and momentum 0.9 – displaying last few epochs: 

=============== Epoch: 11 

 

Train loss: -4.477931434161042, Train SSIM: 0.5625017621927896, Train PSNR: 
15.402120248823186 

Test loss SOTS Indoor: -4.58300256729126, Test SSIM SOTS Indoor: 
0.564318115234375, Test PSNR SOTS Indoor: 15.671393402099609 

Test loss SOTS Outdoor: -4.4845680594444275, Test SSIM SOTS Outdoor: 
0.556801249341267, Test PSNR SOTS Outdoor: 15.481773314437246 

 

=============== Epoch: 12 

 

Train loss: -4.398374682692088, Train SSIM: 0.5505708798670275, Train PSNR: 
15.168653956884311 

Test loss SOTS Indoor: -4.740819454193115, Test SSIM SOTS Indoor: 
0.5974895257949829, Test PSNR SOTS Indoor: 16.205234985351563 

Test loss SOTS Outdoor: -4.667151629924774, Test SSIM SOTS Outdoor: 
0.5678127781162418, Test PSNR SOTS Outdoor: 16.130863461068007 

 

=============== Epoch: 13 

 

Train loss: -4.3862909356208695, Train SSIM: 0.5472255715222935, Train PSNR: 
15.132052006697638 

Test loss SOTS Indoor: -4.532739818096161, Test SSIM SOTS Indoor: 
0.5852424521446228, Test PSNR SOTS Indoor: 15.483044326782226 

Test loss SOTS Outdoor: -5.1877481341362, Test SSIM SOTS Outdoor: 
0.5790352128385529, Test PSNR SOTS Outdoor: 17.787031685433735 

 

=============== Epoch: 14 
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Train loss: -4.407835767693715, Train SSIM: 0.5563238682791196, Train PSNR: 
15.192759141792477 

Test loss SOTS Indoor: -4.943126082420349, Test SSIM SOTS Indoor: 
0.6073142008781434, Test PSNR SOTS Indoor: 16.847265869140625 

Test loss SOTS Outdoor: -4.481691896915436, Test SSIM SOTS Outdoor: 
0.5506985415288104, Test PSNR SOTS Outdoor: 15.506303709696947 

 

Inference on the Best Model 

Indoor hazy images: 

 

Indoor clear images: 

 

 

Indoor dehazed images: 
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Outdoor hazy images: 

 

Outdoor clear images: 

 

Outdoor dehazed images: 

 

 

Evaluation Metrics – PSNR and SSIM 

 Test Loss SOTS Test SSIM Test PSNR 

Indoor -4.943126082420349 0.6073142008781434 16.847265869140625 

Outdoor -5.1877481341362 0.5790352128385529 17.787031685433735 
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TASK 5: Apply improved pipeline to video data for dehazing 

We built a video dehazing pipeline using our trained Involuted U-Net and applied 

it to hazy/foggy video  

Results obtained: 

We have shown the snippet of the video here in the report but the complete video 

is available in the results folder mentioned at the start of the report: 

 

Hazy video snippet: 
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Dehazed video snippet: 
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Conclusion 

• We have shown the results on the pipeline developed for image enhancing 

via dehazing in task1. We have obtained better results on the indoor images 

and comparable results on the outdoor images considering the PNSR and 

SSIM metrics. 

• We have implemented and reproduced the results of the FFA-Net paper for 

both – model trained from scratch and by using pretrained model. For the 

pretrained model we have resized the image to 128 x 128 and for the model 

trained from scratch, the images are resized to 46 x 62 due to the GPU 

limitations (discussion in the next section). 

• We have implemented a modified architecture – we have used involutions in 

place of convolutions and applied composite loss - perpetual (Alexnet) + 

SSIM loss + PSNR loss along with weightages. We have obtained a better 

result than others. 

• The visual quality of the images obtained in Task4 doesn’t appear to have the 

realistic colors. This can be possibly be improved by considering the 

perpetual loss of VGG. 

• Also, if this model is trained on the higher image size or on the original size 

of the images then we can obtain much better results and visual quality 

compared to the results obtained FFA-Net paper (possibly by using better 

GPU’s). 

• We have implemented all the proposed tasks and we have clearly shown that 

our own architecture implemented in task4 is giving better  results compared 

to others. 

Methods Indoor Outdoor 

 PSNR SSIM PSNR SSIM 

DCP 14.77 0.7757 22.65 0.9226 

DCP with Preprocessing 
and 

Postprocessing(Pipeline1) 

11.83 0.678 15.7 0.7712 
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DCP with Preprocessing 
and 

Postprocessing(Pipeline2) 

11.15 0.5116 14.93 0.6395 

FFA-Net on pretrained 
model 

14.86 0.5559 19.41 0.6363 

Ours 16.85 0.6073 17.78 0.5790 

Below are the methods used where the image size are not 128 x 128 so it is not 

considered for the comparison. 

Methods Indoor Outdoor 

 PSNR SSIM PSNR SSIM 

DCP 14.91 0.7808 21.99 0.9086 

DCP with Preprocessing 
and 

Postprocessing(Pipeline1) 

15.08 0.7487 18.55 0.8236 

DCP with Preprocessing 
and 

Postprocessing(Pipeline2) 

14.89 0.7091 18.07 0.7580 

FFA-Net on the model 
trained from 

scratch(resized image) 

16.73 0.6333 15.99 0.5487 

 

Limitations 

The main limitation was with respect to the GPU usage, as we had to run all the 

codes on colab / colab pro, we had to compromise on things listed below. 

• We have resized the images to 128 x 128 due to GPU limitations (in task1). 

• We weren’t able to run the inference on the test dataset with the actual image 

size so we had to resize it for both pre-trained and the model trained from 

scratch (in task3). 

• We weren’t able to use perpetual loss using VGG due to GPU limitations. So, 

we have implemented the AlexNet perpetual loss (in task4 and 5). 

• We weren’t able to replace all the convolutions in the model with involutions. 

So, we have just replaced for few in the encoder (in task4 and 5). 



PAGE 41 

• We weren’t able to add residual connections in both encoder and decoder (in 

task4 and 5).  

• We weren’t able to train the model with higher batch sizes. 
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